
CSCI-243 Exam 2 Review February 22, 2015
Presented by the RIT Computer Science Community http://csc.cs.rit.edu

C Preprocessor

1. Consider the following program:

1 #include <stdio.h>

2
3 #ifdef WINDOWS

4 #include <windows.h>

5
6 #define WIN_CREATEFILE(a) CreateFile(a, \

7 GENERIC_READ , \

8 FILE_SHARE_READ , \

9 OPEN_ALWAYS , \

10 FILE_ATTRIBUTE_NORMAL)

11 #endif

12
13 int main(int argc , char** argv) {

14 // ... some previous initialization stuff

15
16 #ifdef WINDOWS

17 HANDLE file = WIN_CREATEFILE(argv [1]);

18 #else

19 FILE* file = fopen(argv[1], "r");

20 #endif

21
22 // ... do some more stuff

23
24 return 0;

25 }

(a) What flag would you use to enable the Windows specific build?

-DWINDOWS This causes WINDOWS to be #defined at compile time.

(b) Why is this useful?

You can use the same source for building on multiple platforms.

(c) Why is the macro useful?

It condenses a long function call into a simple call with standard arguments.

Memory Management

2. Consider the following statement in a larger program:

int* x = (int*) malloc (20); // create an array of 20 ints

After testing the program, you notice that the values of x[5], x[6], · · ·, x[19] keep changing unexpectedly.

(a) Why is this?

(b) What should the statement actually be?

The argument to malloc should be the number of bytes to allocate, not the number of elements.
Since ints are usually 4 bytes long, the array only has enough room to hold 5 ints (20/4 = 5).

A proper (and portable) statement should be: int* x = (int*) malloc(sizeof(int)*20);

3. The following program compiles.

1

(a) Will the program crash at run time? If so, on which line will it crash?

1 #include <stdlib.h>

2 int main(int argc , char **argv)

3 {

4 int *x = NULL;

5 int *y = NULL;

6 int *z = NULL;

7
8 x = (int *) malloc(sizeof(int) * 10);

9 y = (int *) malloc (20);

10 x = (int *) malloc(sizeof(char) * 50);

11
12 free(x);

13 free(y);

14 free(z);

15
16 return 0;

17 }

No, it runs and terminates normally. free will not do anything if the pointer passed to it
is NULL.

(b) What tool can you use to find memory leaks? What options would you use?

valgrind --leak-check=full <program name>

(c) What output would you get from part b? Is there a memory leak? (If so, where?)

Something similar to ”40 bytes lost”. Yes, the first call to malloc is never freed.

4. (a) Given the following:

struct Point {

char label;

double x;

double y;

};

What (specifically) happens when the following command is executed?

struct Point *newPoint = (struct Point *) malloc(sizeof(struct Point));

The malloc command allocates space in memory for the entire Point struct. Given the
known sizes of char and double (x and y respectively), enough space to hold one char and
two doubles are set aside in memory. Then the memory address of the newly-allocated
space is returned and assigned to the struct Point*.

(b) Let’s add some more information:

typedef struct {

struct Point p1;

struct Point p2;

struct Point p3;

} Triangle;

What (specifically) happens when the following command is executed?

Triangle *tri = (Triangle *) malloc(sizeof(Triangle));

The same thing happens, but now we need to know the size of Triangle from the last
question. Based on the definitions provided, this means allocating exactly enough space
for three Point structs. If the size of a Point struct is X bits, then exactly 3X bits will be
allocated in memory. Then the memory address is returned as before.

2

Program Translation

5. (a) List the four main steps in the program translation process.

i. Compiler: Translates C code into assembly code.

ii. Assembler: Translates assembly code into a relocatable object module, which are in
machine language.

iii. Linker: Combines object modules and static libraries (archives) into a single load mod-
ule, which is also in machine language.

iv. Loader: Part of OS. Links a load module with dynamic link libraries (shared libraries),
if applicable, and runs the program.

(b) List the four phases of source code translation, which make up the compilation step of program
translation.

i. Lexical analysis (scanner): Translates source code text into a sequence of tokens.

ii. Syntax analysis (parser): Validates tokens to see if they are legal with respect to the
language’s grammar.

iii. Semantic analysis: Checks and determines the meaning of token sequences and pro-
duces output in an intermediate language.

iv. Code generation: Translates the intermediate output into assembly language, to be
processed by the assembler.

Abstract Data Types

6. Generally speaking, ADTs are easier to define and work with in procedural languages like C, as opposed
to object-oriented languages like Java or C#. (True or False). Explain your answer.

False. C lacks object-oriented features that streamline the creation and use of ADTs in the lan-
guage. C doesn’t have access modifiers (e.g., private or protected), so hiding the underlying
implementations is tougher, and will often involve the use of pointers.

3

Makefiles

7. Consider the following makefile:

1 CFLAGS := -std=c99 -Wall -Wextra

2 me: me.o

3 $(CC) $(LDFLAGS) -o $@ $^ $(LDLIBS)
4 calc: calc.o real.o

5 $(CC) $(LDFLAGS) -o $@ $^ $(LDLIBS)
6 calc.o: calc.c

7 $(CC) $(CFLAGS) -c $<
8 real.o: real.c

9 $(CC) $(CFLAGS) -c $<
10 .PHONY: clean

11 clean:

12 $(RM) me calc *.o

(a) Ralph is annoying. One day, when Ralph makes a particularly unreasonable demand, his friend
loses it and shouts, “Why don’t you make me???” Always one to take things literally, Ralph pops
open his favorite Bourne-compatible shell and types: make me. However, he is confronted with
the message: make: ’me’ is up to date.

Explain the meaning of this message. Which (if any) of the relevant files are now located in
Ralph’s directory? What numeric values did Make compare before outputting this message?

This output indicates that Make did not need to rebuild the me executable because:

• the files me.o and me both existed already

• and the modification timestamp of me.o was earlier than that of me.

After the command completes, both files are still present in Ralph’s directory.

(b) Ralph is childishly proud of himself, but everyone just groans and tells him to ”get real”. Coin-
cidentally, Ralph has a library providing functions for working with reals, as well as a calculator
program to test the functionality. Ready to win another trivial victory, Ralph types make clean

and then make calc.

List the exact sequence of commands that are executed as a result of this new invocation.

Because the clean target eliminated all the object files and executables, Make will decide
it needs to rebuild everything:
$ cc -std=c99 -Wall -Wextra -c calc.c
$ cc -std=c99 -Wall -Wextra -c real.c
$ cc -o calc calc.o real.o

4

File I/O

8. Write a program that searches a file for a provided number on stdin. Print out any errors on stderr.
Example:

$ fileSearch file.txt

> 234

found: 234

1 #include <stdio.h>

2 #include <stdlib.h>

3
4 int main(int argc , char* argv []) {

5 if(argc != 2) {

6 fprintf(stderr , "Usage: fileSearch <filename >");

7 exit(EXIT_FAILURE);

8 }

9 FILE* handle = fopen(argv[1], "r");

10 if(! handle) {

11 perror("fopen failed:");

12 exit(EXIT_FAILURE);

13 }

14 int input = 0;

15 scanf("\%d", &input);

16 int check = 0;

17 while(fscanf(handle , "\%d", &check) != EOF) {

18 if(check == input) {

19 printf("found: \%d", input);

20 exit(EXIT_SUCCESS);

21 }

22 }

23 fclose(handle);

24 printf("\%d not found", input);

25 return EXIT_SUCCESS;

26 }

5

9. (a) The following program is intended to read a text file and outputs (as binary data) the number of
characters (including new lines) in each line to a file. However, there is a problem with the code
the way it is currently written. Find the problem and explain how to fix it. Note: The code is
compiled and linked using GCC.

1 #define _GNU_SOURCE

2
3 #include <stdio.h>

4 #include <stdlib.h>

5
6 int main(void) {

7 FILE* inputfile = fopen("input.txt", "r");

8 if(! inputfile) {

9 perror("fopen failed for inputfile:");

10 exit(EXIT_FAILURE);

11 }

12 int numchars = 0;

13 char* line = NULL;

14 FILE* outputfile = fopen("output.txt", "w");

15 if(! outputfile) {

16 perror("fopen failed for outputfile:");

17 fclose(inputfile);

18 exit(EXIT_FAILURE);

19 }

20 while ((numchars = getline(line , 1024, inputfile)) != -1) {

21 fprintf(outputfile , "%d\n", numchars);

22 }

23 fclose(inputfile);

24 fclose(outputfile);

25 return EXIT_SUCCESS;

26 }

The signature of getline is ssize t getline(char** lineptr, size t* n, FILE* stream).
If *lineptr is NULL and *n is 0, then getline will dynamically allocate a C string con-
taining the next line of stream (including the new line character), and set *lineptr to
this C string, and *n to the size of this new stream. It returns the size of the string read.
If the *lineptr given to the function is not NULL, then it expects *n to be the length of
*lineptr, and it will attempt to use *lineptr to hold the next line if it can fit, otherwise it
will use realloc to allocate enough space for it to fit. This program does not use getline
correctly, and causes a type error when compiling. See the answer of the next question for
how to fix this problem.

6

(b) Rewrite the code so that it outputs the data using binary streams instead.

1 #define GNU SOURCE
2
3 #include <s t d i o . h>
4 #include <s t d l i b . h>
5
6 int main (void) {
7 FILE∗ i n p u t f i l e = fopen (” input . txt ” , ” r ”) ;
8 i f (! i n p u t f i l e) {
9 pe r ro r (” fopen f a i l e d f o r i n p u t f i l e : ”) ;

10 e x i t (EXIT FAILURE) ;
11 }
12 s s i z e t numchars = 0 ;
13 char∗ l i n e = NULL;
14 FILE∗ o u t p u t f i l e = fopen (” output . txt ” , ”wb”) ;
15 i f (! o u t p u t f i l e) {
16 pe r ro r (” fopen f a i l e d f o r o u t p u t f i l e : ”) ;
17 f c l o s e (i n p u t f i l e) ;
18 e x i t (EXIT FAILURE) ;
19 }
20 s i z e t n = 0 ;
21 while ((numchars = g e t l i n e (& l i n e , &n , i n p u t f i l e)) != −1) {
22 int t owr i t e [1] = { numchars } ;
23 i f (f w r i t e ((void ∗) towr i te , s izeof (int) , 1 , o u t p u t f i l e) != 1) {
24 pe r ro r (” f w r i t e i n to o u t p u t f i l e f a i l e d : ”) ;
25 f c l o s e (i n p u t f i l e) ;
26 f c l o s e (o u t p u t f i l e) ;
27 e x i t (EXIT FAILURE) ;
28 }
29 }
30 f r e e (l i n e) ;
31 f f l u s h (o u t p u t f i l e) ;
32 f c l o s e (i n p u t f i l e) ;
33 f c l o s e (o u t p u t f i l e) ;
34 return EXIT SUCCESS ;
35 }

7

